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}' Why Uncertainty Quantification (UQ)?

Need to design systems given uncertain/variable material properties,
manufacturing processes, operating conditions, models, measurements...

Uncertainty must be properly modeled to quantify risk
and design robust and reliable systems.

Aleatory / irreducible Epistemic / reducible
inherent variability with sufficient data VS. uncertainty from lack of knowledge
(probabilistic models) (non-probabilistic models)

Employ a UQ-based approach to optimization under uncertainty (OUU)
— safety factors, multiple operating conditions, local sensitivities insufficient
— tailor OUU methods to strengths of different UQ approaches

OUU methods encompass both:

design for robustness design for reliability
(moment statistics: (tail statistics:
mean, variance) probability of failure)
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Uncertainty-Aware Design

Rather than designing and then post-
processing to evaluate uncertainty...

Standard NLP
minimize f(d)
subjectto  g; < g(d) < gu
h(d) = hy
d; < d < dy

...actively design while accounting for
uncertainty/reliability metrics

Augment with general response statistics s,
(e.q. u, o, or reliability z/f/p) with linear map

minimize  f(d) 4+ Wsyu(d)
subjectto g7 < g(d) < gu
h(d) = hy
d; < d<dy
a; < A; Su(d) < ay
Ae su(d) = ay

Focus on large-scale simulation-based engineering applications:

» mostly PDE-based, often transient, some agent-based/discrete event models
» response mappings (fns. and constraints) are nonlinear and implicit
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}' Outline

* DAKOTA toolkit overview

* Uncertainty quantification (UQ) — forward
propagation:
— Sampling-based
— Reliability analysis
* Enriching optimization with UQ
 Example problem — MEMS
« Conclusion
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iterative DAKOTA

analysis.. optimization uncertainty quant, J:
— S

parameter est., sensitivity analysi
Goal: answer fundamental engineering questions
* What is the best design? How safe is it?
* How much confidence do | have in my answer?
Challenges
- Software: reuse tools and common interfaces

« Algorithm R&D: nonsmooth/discontinuous/multimodal, e
mixed variables, unreliable gradients, costly sim. failures n— ' '

« Scalable parallelism: ASCI-scale apps & architectures

Impact: Tool for DOE labs and external partners, broad application @ S
deployment, free via GNU GPL (~3000 download registrations)

Laboratories
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DAKOTA Framework

Iterator

Model:

Parameters

(e

DoE Leastsa_l :
— = Design Application Functions
|DDACi|CCD/BB| INLssOL | [GN| continuous system objectives
iscrete P
|@ | I . fork constraints
QMC/CV L2S0 Uncertain direct least sq. terms
normal/logn . i
LY Optimizer] (aramstudy uniform/logu grid generic
- triangular Approximation Gradients
[Vector] [List beta/gamma global numerical
[Reliability] [SFE Center] [MultiD] EVI, 0L, polynomial 1/2/3, NN, analytic
histogram kriging, MARS, RBF  Hessians
State local — Taylor series Ivti
continuous hi hical ana y.tlc
IDOT|[CONMIN|INPSOL/NLPQL|OPT+H|COLINY|JEGA| Comins ierarchica quasi
Strategy: control of multiple iterators and models
Coordination: Strate
Iterator Nested atesyl
Layered /
Model Cascaded — -
Concurrent |Opt1mlzat10n| Uncertainty
Iterator [ Adaptive/lnteractive T
‘ \ Parallelism:
> Model Asynchronous local
Message passing
Iterator Hybrid

R

Model

]

4 nested levels with
Master-slave/dynamic
Peer/static
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* Uncertainty quantification (UQ) — forward
propagation:
— Sampling-based
— Reliability analysis
* Enriching optimization with UQ
 Example problem —- MEMS
« Conclusion
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g Uncertainty Quantification

Forward propagation: quantify the effect that
uncertain input variables have on model output

Given distributions...

n n
> >

GOALS: - determine variance of outputs based on uncertain inputs (UQ)

+ identify inputs whose variances contribute most to output
variance (global sensitivity analysis)

PCD yield - 0.48 cal/cm2

UQ Applications
joint -
mechanics 1
Foree (pM) Bistable Mechanism Performance 0 e —— =4 |
500 ig \ | —
100 - —+— Mornal Curve \\ \\ . . . \ , 7 \ =
e 058 Uppeer Linzt %5 160 170 Tim1:((>ns) 190 200 210
300 1 — 55%5 Lovaver Lintt Q ShOCk thSICS
200 1 wind %(/év Ly
100 ) N
MEMS device penetrators g

0 — — — v Sandia
-mu}J] LB 3 A TM]I 12 g ”d @National
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Uncertainty Quantification Methods

Active UQ development in DAKOTA (new, developing, planned)

— Sampling: LHS/MC, QMC/CVT, Bootstrap/Importance/Jackknife
Gunzburger collaboration

— Reliability: Evaluate probablllty of attaining specified outputs / failure
RIA/PMA mappings),

MVSOSM, x/u AMV2 x/u AMV?+, TANA, SORM (RIA/PMA)
Renaud/Mahadevan collaborations

— SFE: Polynomial chaos expansions (quadrature/cubiture extensions).
Ghanem (Walters) collaborations

— Metrics: Importance factors, partial correlations, main effects, and
variance-based decomposition.

— Epistemic: 2"d-order probability: combines epistemic and aleatory;
Dempster-Schafer: basic probability assignment (intervals);

ormalized ReledSes: Replicata R1

B a ye S I a n 10! 100 Observanons, 10000 FumfelebseNanon

—-=—EPA Limit I

g

00 01 02 03 04 05 0.6 07 08 0.9 1.0
Source 1 —2k | 90%

Source 2 | 10% : 70% : 20%

—r ——re ” i Frame 2 1 @ ﬁgtn-dlal
: T . E rame 2a iona
o o e .
Source 3 - S e S S Laboratories

Normalized Release (EPA units}, R

Probablity Vaiue » R
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}- Sampling Capabilities

Parameter Studies Design of Computer Experiments (DACE)
- perturb each variable and Design of Experiments (DOE)

. “one-off’ or one at a time « Box-Behnken, Central Composite
. simple but inefficient - factorial and fractional designs
 orthogonal arrays

Sampling Methods - typical for forward
UQ propagation

« Standard Monte Carlo N samples\ 4 Output

- Pseudo-Monte Carlo: Latin Hypercube ﬁ Distributions
Sampling (samples from equi-probability

bins for all 1-D projections)
 Quasi-Monte Carlo (low discrepancy): AN >-< me
Hammersley, Halton |

» Centroidal Voroni Tesselation (CVT):
approx. uniform samples over arbitrarily /_\
shaped parameter spaces _/ e

sure 1

Q

measure 2
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}- Analytic Reliability Methods for UQ

* Define limit state function g(x) for response metric (model
output) of interest, where x are uncertain variables.

* Reliability methods either

— map specified response levels g(x) = z (perhaps corr. to a
failure condition) to reliability index B8 or probability p; or

— map specified probability or reliability levels to the
corresponding response levels.

Mean Value (first order, second moment —- MVFOSM)
determine mean and variance of limit state:

\
g = g(px)
Z Z Cou(i, _} _ux 49 ——(pix) simple
di; approximation,
- > but widely used
— g -
Bedf = . o 2 = iy — OgBeas by analysts
= pB _ 8 p,3 =z ~
3 _ FTH z = g+ 0gBcedf Santia
eedf o _/ @ National
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Analytic Reliability: MPP Search

Perform optimization in u-space (std normal space corr. to uncertain x-space)
to determine Most Probable Point (of response or failure occurring)

Reliability Index
Approach (RIA)

1.1T 11

minimize
subject to G(u) =2

Find min dist to G level curve
Used for fwd map z > p/f

=
wn

A

Cumulative Probability

g MV

O x—fu-space AMV
O x-fu-space AMV+ & FORM

+ 100k Latin hypercube samples

! 1 !
0 05 1 15

G(u)

...should yield better
estimates of reliability
than Mean Value
methods

[
»

Cumulative Probability

071

031

Performance Measure
Approach (PMA)

+G ()

subject to ulu = 3*

Find min G at Sradius
Better for inv map p/f > z

minimize

O M

© x-/u-space AMY

© x-/u-space AMY+ & FORM

+ 100k Latin hypercube samples

L I I L
0.5 1 1.5 2



Reliability: Algorithmic Variations

Many variations possible to improve efficiency, including in DAKOTA...

- Limit state linearizations: use a surrogate for the limit state during optimization

AMV:  g(x) = g(px) + Vag(px) " (x = pixc)
u-space AMV: G(u) = G(py) + VG (pu) ' (0 — piy)
AMV+: g(x) = g(x*) + V,g(x*)" (x — x*)
u-space AMV+: G(u) = G(u*) + V,G(u)? (u — u*)
FORM: no linearization

(also 2" order approximations — can use full or quasi-Newton Hessians in optimization)

* Integrations (in u-space to determine probabilities):

p(g S‘: Z) = (ﬁ{_b]f.'df}
, 2ud_order; < p=@(—F3) || —
p(g = z) = ‘i'{_-h]f:ﬁdf} ! ( o E \/ 1 -+ I."EH-?'

curvature correction

n—1 1

Ist-order: {

« MPP search algorithm
[HL-RF], Sequential Quadratic Prog. (SQP), Nonlinear Interior Point (NIP)

« Warm starting
When: AMV+ iteration increment, z/p/ 5 level increment, or design variable change
What: linearization point & assoc. responses (AMV+) and MPP search initial guess @ Sandia
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« Enriching optimization with UQ
 Example problem —- MEMS
« Conclusion
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} Optimization Under Uncertainty

Upt -
{d}‘ $s,} optimize, accounting for St
|

min f(d) + Wsy(d)

g1 < g(d) < gu

U0 _ uncertainty metrics h(d) = hy
{u} (R}
|:Sim:| (use any of surveyed UQ methods) dp < d < du
a; < A; su(d) < ay
nested paradigm Ae sy (d) = a4
Input design parameterization
* Uncertain variables augment design variables in simulation | 4
* Inserted design variables: an optimization design variable a4
may be a parameter of an uncertain distribution, e.g., design d.
the mean of a normal. !
Response metrics
Robustness: Reliability: Combined/other:
min/constrain o2 max/constrain p/f pareto tradeoff, LSQ:
or G(B) range (minimize failure) model calibration under

A A uncertainty
@ Sandia
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ample of RBDO Algorithms

Bi-level RBDO minimize f C
RIA _ - PMA minimize f
« Constrain RIA z > p/fresult RBDO{ subject to 3> f3 RBDO{ subject to 2> 3
- Constrain PMA p/ - z result or p<p S T
(UL — U, If d a distribution
Fully analytic Bidevel RBDO | "7 1 i e expand
. en nesting analysis, analytic ‘aBeaf = T=—=7Vay S U xU
reliability sensitivities avoid | VoG Vag = VaxVxg
numerical differencing at design Vapegr = ~O(=eds)Va Doy
level . (1st order)
Sequential/Surrogate-based RBDO: ’
» Break nesting: iterate between opt & UQ until target is met. ;

Trust-region surrogate-based approach is non-heuristic.

minimize f(do) +Vaf(de)*(d —dp)
subject to  B(dg) + Vaf(dg)* (d — dg) > 3
d—dp | <A

Ist-order
(also 2rd-order, ...) -t
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 Example problem — MEMS
« Conclusion
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' Engineering Application Deployment:

- Shape Optimization of Compliant MEMS

* Micro-electromechanical system (MEMS) designs are subject to
substantial variabilities and lack historical knowledge base
» Sources of uncertainty:
— Material properties, manufactured geometries, residual stresses
— Data can be obtained - aleatoric uncertainty, probabilistic approaches

* Resulting part yields can be low or have poor cycle durability

» Goals: shape optimization to...
— Achieve prescribed reliability
— Minimize sensitivity to uncertainties (robustness)

* Nonlinear FE simulations

— ~20 min. desktop simulation expense (SIERRA codes: Adagio, Aria, Andante)

— Remeshing during shape design with FASTQ/CUBIT
or smooth mesh movement with DDRIV

— (semi-analytic) p/f/z gradients appear to be reliable

Bi-stable

MEMS Switch RF MEMS Switch

BEpm AMRAEY



Bi-Stable Switch: Problem Formulation

A switch
contact

u 168 m ; o
F . AMRAY

min |

simultaneously reliable AND robust designs
max Frin(d. n)
s.t. 2 < 3(d)
50 < Frae(d,p) < 150
FEy(d,p) < 8
Spae(d,p) < 1200

€ -15f
2 random variables g 13 design vars d:
| variable | mean std. dev. | distribution 7,3, _ Wia Lia ei
Aaw -0.2 pm 0.08 normal 35f | Sandia
Sr -11 Mpa 4.13 normal b L, L L, L, @ National
T 0 0 0 20 0 labl]ratﬂﬂes



Bi-Stable Switch: Results (DOT/MMFD)

lower RBDO upper | MVFOSM MVFOSM | AMV+/FORM AMV+/FORM
bound metric bound initial optimal initial optimal
Fonin (pIN) -23.03 -23.03
2 3 5.66 2.00 4.02 2.00
a0 Frax (uN) 150 67.35 H0L0 G7.35 H0L0
Es (pm) 8 4,06 3.85 4.06 3.76
Smaz (MPa) 1200 306 313 306 323
Verified 3 4.02 1.75

Reliability: target achieved for AMV+/FORM; target approximated for MV
Robustness: variability in F,;, reduced from 5.7 to 4.6 uN per input o [ug,. /Bl
Ongoing: quantity of interest error estimates - error-corrected UQ/RBDO

s0 T T T T T T 0

S0 =] o

40

MVFOSM-
based RBDO

s
=]
T

force (1 N)
force (1 N)

20F

AMV+/FORM-
based RBDO

I \—/ . | o \/ | - @Sandia
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}-I Conclusions

* Uncertainty-aware design optimization is helpful in engineering
applications where robust and/or reliable designs are essential.

« The DAKOTA toolkit includes algorithms for uncertainty
quantification and optimization of computational models .

- DAKOTA strategies enable combination of algorithms, use of
surrogates and warm-starting, and leveraging massive parallelism.

« Advanced analytic reliability techniques may offer more refined
estimates of uncertainty than sampling or mean value methods and
may be more suitable in an optimization context.

* Further UQ and OPT capabilities are in development as is
deployment to additional applications.

Thank you for your attention!

briadam@sandia.gov |
Sandia
http://endo.sandia.gov/DAKOTA @ O s
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